52,789 research outputs found

    Permanent magnets including undulators and wigglers

    Full text link
    After a few historic remarks on magnetic materials we introduce the basic definitions related to permanent magnets. The magnetic properties of the most common materials are reviewed and the production processes are described. Measurement techniques for the characterization of macroscopic and microscopic properties of permanent magnets are presented. Field simulation techniques for permanent magnet devices are discussed. Today, permanent magnets are used in many fields. This article concentrates on the applications of permanent magnets in accelerators starting from dipoles and quadrupoles on to wigglers and undulators.Comment: 45 pages, presented at the CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 200

    Computational design of rare-earth reduced permanent magnets

    Get PDF
    Multiscale simulation is a key research tool in the quest for new permanent magnets. Starting with first principles methods, a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density product of a magnet made from a novel magnetic material composition. Iron (Fe)-rich magnetic phases suitable for permanent magnets can be found by means of adaptive genetic algorithms. The intrinsic properties computed by ab intro simulations are used as input for micromagnetic simulations of the hysteresis properties of permanent magnets with a realistic structure. Using machine learning techniques, the magnet's structure can be optimized so that the upper limits for coercivity and energy density product for a given phase can be estimated. Structure property relations of synthetic permanent magnets were computed for several candidate hard magnetic phases. The following pairs (coercive field (T), energy density product (kJ.m(-3))) were obtained for iron-tin-antimony (Fe3Sn0.75Sb0.25): (0.49, 290), L1(0) -ordered iron-nickel (L1(0) FeNi): (1, 400), cobalt-iron-tantalum (CoFe6Ta): (0.87, 425), and manganese-aluminum (MnAl): (0.53, 80).Web of Science6215314

    Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension

    Get PDF
    A repulsive-type magnetic bearing system has been fabricated in which the rotor of a vertical-shaft-type motor is levitated due to the repulsive force between two sets of permanent magnets. A novel arrangement of permanent magnets has been reported here, which has made the suspension of the rotor possible. The system is planned to be applied for pumping milks and other related products in the New Zealand dairy industry

    Transversal-rotational and zero group velocity modes in tunable magneto-granular phononic crystals

    Get PDF
    We report on the design and operation of a 1D magneto-granular phononic crystal composed of a chain of steel spherical beads on top of permanent magnets. The magnetic field of the permanent magnets induces forces in the granular structure. By changing its strength, we can tune the dynamic response of the granular structure. We present experimental results with evidence of coupled transversal-rotational modes, and zero group velocities modes. These observations are well supported by a proposed model taking into account the mechanical coupling between the beads and the magnets by linear stiffnesses and including all degrees of freedom in translations and rotations

    Effect of optimal torque control on rotor loss of fault-tolerant permanent-magnet brushless machines

    Get PDF
    A faulted phase in a fault-tolerant permanent-magnet brushless machine can result in significant torque ripple. However, this can be minimized by using an appropriate optimal torque control strategy. Inevitably, however, this results in significant time harmonics in the phase current waveforms, which when combined with inherently large space harmonics, can result in a significant eddy-current loss in the permanent magnets on the rotor. This paper describes the optimal torque control strategy which has been adopted, and discusses its effect on the eddy-current loss in the permanent magnets of four-, five-, and six-phase fault-tolerant machines
    corecore